The Resolution of the Universal Ring for Finite Length Modules of Projective Dimension Two

نویسندگان

  • Andrew R. Kustin
  • ANDREW R. KUSTIN
چکیده

Hochster established the existence of a commutative noetherian ring R and a universal resolution U of the form 0 ! R ! R ! R ! 0 such that for any commutative noetherian ring S and any resolution V equal to 0! S ! S ! S g ! 0, there exists a unique ring homomorphism R ! S with V = U R S. In the present paper we assume that f = e + g and we nd a resolution of R by free P-modules, where P is a polynomial ring over the ring of integers. For small values of e and g our resolution is a minimal resolution of R. For e and g both at least 5, we prove that R does not possess a generic minimal resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copresented Dimension of Modules

 In this paper, a new homological dimension of modules, copresented dimension, is defined. We study some basic properties of this homological dimension. Some ring extensions are considered, too. For instance, we prove that if $Sgeq R$ is a finite normalizing extension and $S_R$ is a projective module, then for each right $S$-module $M_S$, the copresented dimension of $M_S$ does not exceed the c...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Complexes of $C$-projective modules

Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.

متن کامل

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

Gorenstein homological dimensions with respect to a semi-dualizing module over group rings

Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring  . It is shown that Gorenstein homological dimensions  of an  -RΓ module M with respect to a semi-dualizing module,  are equal over R and RΓ  .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006